Перевод: со всех языков на английский

с английского на все языки

original patent

  • 1 original patent

    (ам.) первоначальный патент (патент, по которому впоследствии выдан переизданный патент)

    Англо-русский словарь промышленной и научной лексики > original patent

  • 2 defects in the original patent

    Англо-русский словарь промышленной и научной лексики > defects in the original patent

  • 3 patente original

    • basic patent

    Diccionario Técnico Español-Inglés > patente original

  • 4 patente original

    f.
    basic patent.

    Spanish-English dictionary > patente original

  • 5 перший патент

    Українсько-англійський юридичний словник > перший патент

  • 6 оригинальная патентная информация

    Русско-английский словарь по патентам и товарным знакам > оригинальная патентная информация

  • 7 основной патент

    1) Engineering: parent patent
    4) Patents: main patent, master patent (в отличие от патентов-аналогов, выданных на это же изобретение в других странах)

    Универсальный русско-английский словарь > основной патент

  • 8 родовой патент

    Универсальный русско-английский словарь > родовой патент

  • 9 Holmes, Frederic Hale

    [br]
    fl. 1850s–60s
    [br]
    British engineer who pioneered the electrical illumination of lighthouses in Great Britain.
    [br]
    An important application of the magneto generator was demonstrated by Holmes in 1853 when he showed that it might be used to supply an arc lamp. This had many implications for the future because it presented the possibility of making electric lighting economically successful. In 1856 he patented a machine with six disc armatures on a common axis rotating between seven banks of permanent magnets. The following year Holmes suggested the possible application of his invention to lighthouse illumination and a trial was arranged and observed by Faraday, who was at that time scientific adviser to Trinity House, the corporation entrusted with the care of light-houses in England and Wales. Although the trial was successful and gained the approval of Faraday, the Elder Brethren of Trinity House imposed strict conditions on Holmes's design for machines to be used for a more extensive trial. These included connecting the machine directly to a slow-speed steam engine, but this resulted in a reduced performance. The experiments of Holmes and Faraday were brought to the attention of the French lighthouse authorities and magneto generators manufactured by Société Alliance began to be installed in some lighthouses along the coast of France. After noticing the French commutatorless machines, Holmes produced an alternator of similar type in 1867. Two of these were constructed for a new lighthouse at Souter Point near Newcastle and two were installed in each of the two lighthouses at South Foreland. One of the machines from South Foreland that was in service from 1872 to 1922 is preserved in the Royal Museum of Scotland, Edinburgh. A Holmes generator is also preserved in the Science Museum, London. Holmes obtained a series of patents for generators between 1856 and 1869, with all but the last being of the magneto-electric type.
    [br]
    Bibliography
    7 March 1856, British patent no. 573 (the original patent for Holmes's invention).
    1863, "On magneto electricity and its application to lighthouse purposes", Journal of the Society of Arts 12:39–43.
    Further Reading
    W.J.King, 1962, in The Development of Electrical Technology in the 19th Century; Washington, DC: Smithsonian Institution, Paper 30, pp. 351–63 (provides a detailed account of Holmes's generators).
    J.N.Douglas, 1879, "The electric light applied to lighthouse illumination", Proceedings of the Institution of Civil Engineers 57(3):77–110 (describes trials of Holmes's machines).
    GW

    Biographical history of technology > Holmes, Frederic Hale

  • 10 дефекты первоначальной заявки

    Универсальный русско-английский словарь > дефекты первоначальной заявки

  • 11 оригинальная патентная информация

    Универсальный русско-английский словарь > оригинальная патентная информация

  • 12 первоначальный патент

    Универсальный русско-английский словарь > первоначальный патент

  • 13 дефекты первоначальной заявки

    Русско-английский словарь по патентам и товарным знакам > дефекты первоначальной заявки

  • 14 Parsons, Sir Charles Algernon

    [br]
    b. 13 June 1854 London, England
    d. 11 February 1931 on board Duchess of Richmond, Kingston, Jamaica
    [br]
    English eingineer, inventor of the steam turbine and developer of the high-speed electric generator.
    [br]
    The youngest son of the Earl of Rosse, he came from a family well known in scientific circles, the six boys growing up in an intellectual atmosphere at Birr Castle, the ancestral home in Ireland, where a forge and large workshop were available to them. Charles, like his brothers, did not go to school but was educated by private tutors of the character of Sir Robert Ball, this type of education being interspersed with overseas holiday trips to France, Holland, Belgium and Spain in the family yacht. In 1871, at the age of 17, he went to Trinity College, Dublin, and after two years he went on to St John's College, Cambridge. This was before the Engineering School had opened, and Parsons studied mechanics and mathematics.
    In 1877 he was apprenticed to W.G.Armstrong \& Co. of Elswick, where he stayed for four years, developing an epicycloidal engine that he had designed while at Cambridge. He then moved to Kitson \& Co. of Leeds, where he went half shares in a small experimental shop working on rocket propulsion for torpedoes.
    In 1887 he married Katherine Bethell, who contracted rheumatic fever from early-morning outdoor vigils with her husband to watch his torpedo experiments while on their honeymoon! He then moved to a partnership in Clarke, Chapman \& Co. at Gateshead. There he joined the electrical department, initially working on the development of a small, steam-driven marine lighting set. This involved the development of either a low-speed dynamo, for direct coupling to a reciprocating engine, or a high-speed engine, and it was this requirement that started Parsons on the track of the steam turbine. This entailed many problems such as the running of shafts at speeds of up to 40,000 rpm and the design of a DC generator for 18,000 rpm. He took out patents for both the turbine and the generator on 23 April 1884. In 1888 he dissolved his partnership with Clarke, Chapman \& Co. to set up his own firm in Newcastle, leaving his patents with the company's owners. This denied him the use of the axial-flow turbine, so Parsons then designed a radial-flow layout; he later bought back his patents from Clarke, Chapman \& Co. His original patent had included the use of the steam turbine as a means of marine propulsion, and Parsons now set about realizing this possibility. He experimented with 2 ft (61 cm) and 6 ft (183 cm) long models, towed with a fishing line or, later, driven by a twisted rubber cord, through a single-reduction set of spiral gearing.
    The first trials of the Turbinia took place in 1894 but were disappointing due to cavitation, a little-understood phenomenon at the time. He used an axial-flow turbine of 2,000 shp running at 2,000 rpm. His work resulted in a far greater understanding of the phenomenon of cavitation than had hitherto existed. Land turbines of up to 350 kW (470 hp) had meanwhile been built. Experiments with the Turbinia culminated in a demonstration which took place at the great Naval Review of 1897 at Spithead, held to celebrate Queen Victoria's Diamond Jubilee. Here, the little Turbinia darted in and out of the lines of heavy warships and destroyers, attaining the unheard of speed of 34.5 knots. The following year the Admiralty placed their first order for a turbine-driven ship, and passenger vessels started operation soon after, the first in 1901. By 1906 the Admiralty had moved over to use turbines exclusively. These early turbines had almost all been direct-coupled to the ship's propeller shaft. For optimum performance of both turbine and propeller, Parsons realized that some form of reduction gearing was necessary, which would have to be extremely accurate because of the speeds involved. Parsons's Creep Mechanism of 1912 ensured that any errors in the master wheel would be distributed evenly around the wheel being cut.
    Parsons was also involved in optical work and had a controlling interest in the firm of Ross Ltd of London and, later, in Sir Howard Grubb \& Sons. He he was an enlightened employer, originating share schemes and other benefits for his employees.
    [br]
    Principal Honours and Distinctions
    Knighted. Order of Merit 1927.
    Further Reading
    A.T.Bowden, 1966, "Charles Parsons: Purveyor of power", in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Parsons, Sir Charles Algernon

  • 15 Titt, John Wallis

    [br]
    b. 1841 Cheriton, Wiltshire, England
    d. May 1910 Warminster, Wiltshire, England
    [br]
    English agricultural engineer and millwright who developed a particular form of wind engine.
    [br]
    John Wallis Titt grew up on a farm which had a working post-mill, but at 24 years of age he joined the firm of Wallis, Haslam \& Stevens, agricultural engineers and steam engine builders in Basingstoke. From there he went to the millwrighting firm of Brown \& May of Devizes, where he worked for five years.
    In 1872 he founded his own firm in Warminster, where his principal work as an agricultural engineer was on hay and straw elevators. In 1876 he moved his firm to the Woodcock Ironworks, also in Warminster. There he carried on his work as an agricultural engineer, but he also had an iron foundry. By 1884 the firm was installing water pumps on estates around Warminster, and it was about that time that he built his first wind engines. Between 1884 and 1903, when illness forced his retirement, his wind engines were built primarily with adjustable sails. These wind engines, under the trade marks "Woodcock" and "Simplex", consisted of a lattice tower with the sails mounted on a a ring at the top. The sails were turned to face the wind by means of a fantail geared to the ring or by a wooden vane. The important feature lay in the sails, which were made of canvas on a wood-and-iron frame mounted in a ring. The ends of the sail frames were hinged to the sail circumferences. In the middle of the sail a circular strap was attached so that all the frames had the same aspect for a given setting of the bar. The importance lies in the adjustable sails, which gave the wind engine the ability to work in variable winds.
    Whilst this was not an original patent of John Wallis Titt, he is known to be the only maker of wind engines in Britain who built his business on this highly efficient form of sail. In design terms it derives from the annular sails of the conventional windmills at Haverhill in Suffolk and Roxwell in Essex. After his retirement, his sons reverted to the production of the fixed-bladed galvanized-iron wind engine.
    [br]
    Further Reading
    J.K.Major, 1977, The Windmills of John Wallis Titt, The International Molinological Society.
    E.Lancaster Burne, 1906, "Wind power", Cassier' Magazine 30:325–6.
    KM

    Biographical history of technology > Titt, John Wallis

  • 16 оригинальный

    Русско-английский синонимический словарь > оригинальный

  • 17 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 18 Townsend, Matthew

    SUBJECT AREA: Textiles
    [br]
    b. Leicester (?), England
    d. after 1867 USA
    [br]
    English inventor of the latch needle for making seamless hose, and developer of ribbed knitting on circular machines.
    [br]
    Townsend, who described himself in his first patent as a framework knitter and afterwards as a hosier of Leicester, took out a patent in 1847 for the application of a "machine like that of a point net frame to an ordinary stocking-frame". He described needles and hooks of a peculiar shape which were able to take the work off the knitting machine, reverse the loops and return them again so that ribbed knitting could be made on circular machines. These became popular for knitting stockings which, although not fully fashioned, had sufficient strength to fit the leg. In 1854 he took out a patent for making round hose with heels and toes fashioned on other machines. In yet another patent, in 1856, he described a method of raising looped pile on knitted fabrics for making "terry" towelling fabrics. He could use different coloured yarns in the fabric that were controlled by a Jacquard mechanism. It was in the same year, 1856, in a further patent that he described his tumbler or latch needles as well as the making of figured patterns in knitting on both sides of the fabric with a Jacquard mechanism. The latch needles were self-acting, being made to move up and down or backwards and forwards by the action of cams set in the cylindrical body of the machine. Normally the needle worked in a vertical or inclined position with the previous loop on the shank below the latch. Weft yarn was placed in the hook of the needle. The needle was drawn down between fixed plates which formed a new loop with the weft. At the same time, the original loop already on the shank of the needle moved along the shank and closed the latch so that it could pass over the newly formed loop in the needle hook and fall over the end of the needle incorporating the new loop on its way to make the next row of stitches. The latch needle obviated the need for loop wheels and pressers and thus simplified the knitting mechanism. Townsend's invention was the forerunner of an entirely new generation of knitting machines, but it was many years before its full potential was realized, the bearded needle of William Lee being preferred because the hinge of the latch could not be made as fine as the bearded needle.
    Townsend was in the first rank of skilful manufacturers of fancy Leicester hosiery and had a good practical knowledge of the machinery used in his trade. Having patented his needles, he seems not to have succeeded in getting them into very profitable or extensive use, possibly because he fixed the royalty too high. His invention proved to be most useful and profitable in the hands of others, for it gave great impetus to the trade in seamless hose. For various reasons he discontinued his business in Leicester. He emigrated to the USA, where, after some initial setbacks, he began to reap the rewards of his skill.
    [br]
    Bibliography
    1847, British patent no. 11,899 (knitting machine). 1854, British patent no. 1,523 (seamless hose).
    1856, British patent no. 1,157 ("terry" towelling fabrics).
    1856, British patent no. 1,858 (latch needles and double-sided patterns on fabrics).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry, London (mentions Townsend briefly).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (a better account of Townsend).
    RLH

    Biographical history of technology > Townsend, Matthew

  • 19 Fairlie, Robert Francis

    [br]
    b. March 1831 Scotland
    d. 31 July 1885 Clapham, London, England
    [br]
    British engineer, designer of the double-bogie locomotive, advocate of narrow-gauge railways.
    [br]
    Fairlie worked on railways in Ireland and India, and established himself as a consulting engineer in London by the early 1860s. In 1864 he patented his design of locomotive: it was to be carried on two bogies and had a double boiler, the barrels extending in each direction from a central firebox. From smokeboxes at the outer ends, return tubes led to a single central chimney. At that time in British practice, locomotives of ever-increasing size were being carried on longer and longer rigid wheelbases, but often only one or two of their three or four pairs of wheels were powered. Bogies were little used and then only for carrying-wheels rather than driving-wheels: since their pivots were given no sideplay, they were of little value. Fairlie's design offered a powerful locomotive with a wheelbase which though long would be flexible; it would ride well and have all wheels driven and available for adhesion.
    The first five double Fairlie locomotives were built by James Cross \& Co. of St Helens during 1865–7. None was particularly successful: the single central chimney of the original design had been replaced by two chimneys, one at each end of the locomotive, but the single central firebox was retained, so that exhaust up one chimney tended to draw cold air down the other. In 1870 the next double Fairlie, Little Wonder, was built for the Festiniog Railway, on which C.E. Spooner was pioneering steam trains of very narrow gauge. The order had gone to George England, but the locomotive was completed by his successor in business, the Fairlie Engine \& Steam Carriage Company, in which Fairlie and George England's son were the principal partners. Little Wonder was given two inner fireboxes separated by a water space and proved outstandingly successful. The spectacle of this locomotive hauling immensely long trains up grade, through the Festiniog Railway's sinuous curves, was demonstrated before engineers from many parts of the world and had lasting effect. Fairlie himself became a great protagonist of narrow-gauge railways and influenced their construction in many countries.
    Towards the end of the 1860s, Fairlie was designing steam carriages or, as they would now be called, railcars, but only one was built before the death of George England Jr precipitated closure of the works in 1870. Fairlie's business became a design agency and his patent locomotives were built in large numbers under licence by many noted locomotive builders, for narrow, standard and broad gauges. Few operated in Britain, but many did in other lands; they were particularly successful in Mexico and Russia.
    Many Fairlie locomotives were fitted with the radial valve gear invented by Egide Walschaert; Fairlie's role in the universal adoption of this valve gear was instrumental, for he introduced it to Britain in 1877 and fitted it to locomotives for New Zealand, whence it eventually spread worldwide. Earlier, in 1869, the Great Southern \& Western Railway of Ireland had built in its works the first "single Fairlie", a 0–4–4 tank engine carried on two bogies but with only one of them powered. This type, too, became popular during the last part of the nineteenth century. In the USA it was built in quantity by William Mason of Mason Machine Works, Taunton, Massachusetts, in preference to the double-ended type.
    Double Fairlies may still be seen in operation on the Festiniog Railway; some of Fairlie's ideas were far ahead of their time, and modern diesel and electric locomotives are of the powered-bogie, double-ended type.
    [br]
    Bibliography
    1864, British patent no. 1,210 (Fairlie's master patent).
    1864, Locomotive Engines, What They Are and What They Ought to Be, London; reprinted 1969, Portmadoc: Festiniog Railway Co. (promoting his ideas for locomotives).
    1865, British patent no. 3,185 (single Fairlie).
    1867. British patent no. 3,221 (combined locomotive/carriage).
    1868. "Railways and their Management", Journal of the Society of Arts: 328. 1871. "On the Gauge for Railways of the Future", abstract in Report of the Fortieth
    Meeting of the British Association in 1870: 215. 1872. British patent no. 2,387 (taper boiler).
    1872, Railways or No Railways. "Narrow Gauge, Economy with Efficiency; or Broad Gauge, Costliness with Extravagance", London: Effingham Wilson; repr. 1990s Canton, Ohio: Railhead Publications (promoting the cause for narrow-gauge railways).
    Further Reading
    Fairlie and his patent locomotives are well described in: P.C.Dewhurst, 1962, "The Fairlie locomotive", Part 1, Transactions of the Newcomen Society 34; 1966, Part 2, Transactions 39.
    R.A.S.Abbott, 1970, The Fairlie Locomotive, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Fairlie, Robert Francis

  • 20 Swan, Sir Joseph Wilson

    [br]
    b. 31 October 1828 Sunderland, England
    d. 27 May 1914 Warlingham, Surrey, England
    [br]
    English chemist, inventor in Britain of the incandescent electric lamp and of photographic processes.
    [br]
    At the age of 14 Swan was apprenticed to a Sunderland firm of druggists, later joining John Mawson who had opened a pharmacy in Newcastle. While in Sunderland Swan attended lectures at the Athenaeum, at one of which W.E. Staite exhibited electric-arc and incandescent lighting. The impression made on Swan prompted him to conduct experiments that led to his demonstration of a practical working lamp in 1879. As early as 1848 he was experimenting with carbon as a lamp filament, and by 1869 he had mounted a strip of carbon in a vessel exhausted of air as completely as was then possible; however, because of residual air, the filament quickly failed.
    Discouraged by the cost of current from primary batteries and the difficulty of achieving a good vacuum, Swan began to devote much of his attention to photography. With Mawson's support the pharmacy was expanded to include a photographic business. Swan's interest in making permanent photographic records led him to patent the carbon process in 1864 and he discovered how to make a sensitive dry plate in place of the inconvenient wet collodian process hitherto in use. He followed this success with the invention of bromide paper, the subject of a British patent in 1879.
    Swan resumed his interest in electric lighting. Sprengel's invention of the mercury pump in 1865 provided Swan with the means of obtaining the high vacuum he needed to produce a satisfactory lamp. Swan adopted a technique which was to become an essential feature in vacuum physics: continuing to heat the filament during the exhaustion process allowed the removal of absorbed gases. The inventions of Gramme, Siemens and Brush provided the source of electrical power at reasonable cost needed to make the incandescent lamp of practical service. Swan exhibited his lamp at a meeting in December 1878 of the Newcastle Chemical Society and again the following year before an audience of 700 at the Newcastle Literary and Philosophical Society. Swan's failure to patent his invention immediately was a tactical error as in November 1879 Edison was granted a British patent for his original lamp, which, however, did not go into production. Parchmentized thread was used in Swan's first commercial lamps, a material soon superseded by the regenerated cellulose filament that he developed. The cellulose filament was made by extruding a solution of nitro-cellulose in acetic acid through a die under pressure into a coagulating fluid, and was used until the ultimate obsolescence of the carbon-filament lamp. Regenerated cellulose became the first synthetic fibre, the further development and exploitation of which he left to others, the patent rights for the process being sold to Courtaulds.
    Swan also devised a modification of Planté's secondary battery in which the active material was compressed into a cellular lead plate. This has remained the central principle of all improvements in secondary cells, greatly increasing the storage capacity for a given weight.
    [br]
    Principal Honours and Distinctions
    Knighted 1904. FRS 1894. President, Institution of Electrical Engineers 1898. First President, Faraday Society 1904. Royal Society Hughes Medal 1904. Chevalier de la Légion d'Honneur 1881.
    Bibliography
    2 January 1880, British patent no. 18 (incandescent electric lamp).
    24 May 1881, British patent no. 2,272 (improved plates for the Planté cell).
    1898, "The rise and progress of the electrochemical industries", Journal of the Institution of Electrical Engineers 27:8–33 (Swan's Presidential Address to the Institution of Electrical Engineers).
    Further Reading
    M.E.Swan and K.R.Swan, 1968, Sir Joseph Wilson Swan F.R.S., Newcastle upon Tyne (a detailed account).
    R.C.Chirnside, 1979, "Sir Joseph Swan and the invention of the electric lamp", IEE
    Electronics and Power 25:96–100 (a short, authoritative biography).
    GW

    Biographical history of technology > Swan, Sir Joseph Wilson

См. также в других словарях:

  • original patent — Same as basic patent …   Ballentine's law dictionary

  • Patent troll — is a pejorative but questioned term used for a person or company who is a non practicing inventor, and buys and enforces patents against one or more alleged infringers in a manner considered by the target or observers as unduly aggressive or… …   Wikipedia

  • Patent prosecution — describes the interaction between an applicant, or their representative, and a patent office with regard to a patent, or an application for a patent. Broadly, patent prosecution can be split into pre grant prosecution, which involves negotiation… …   Wikipedia

  • Patent — A patent is a set of exclusive rights granted by a state to an inventor or his assignee for a fixed period of time in exchange for a disclosure of an invention.The procedure for granting patents, the requirements placed on the patentee and the… …   Wikipedia

  • Patent family — A patent family is all the patents and patent applications resulting from a specific patent application.Generally, a patent application for an invention is originally filed in one country. Sometimes that original patent application is the basis… …   Wikipedia

  • Patent Reexamination — A process conducted by the U.S. Patent and Trademark Office (USPTO) on a patent that already has been issued in order to verify the claims and scope of the patent. A patent reexamination is usually brought about by the original patent holder when …   Investment dictionary

  • patent — pat·ent 1 / pat ənt3 also pāt / adj [Anglo French, from Latin patent patens, from present participle of patēre to be open] 1 a: open to public inspection see also letters patent at letter 2 …   Law dictionary

  • Patent leather — is leather that has been given a high gloss, shiny finish. The original process was developed by Newark based inventor Mario Baker in 1818 with commercial manufacture beginning September 20, 1819. His process used a linseed oil–based lacquer… …   Wikipedia

  • original work of authorship — A standard for copyright protection. Under copyright law, a work is considered original, if it owes its origin to the author that is, it is the result of independent effort, and not the result of copying. Category: Patent, Copyright & Trademark → …   Law dictionary

  • original acquisition — is that by which a man secures a property in a thing which is not at the time he acquires it, and in its then existing condition, the property of any other individual. It may result from occupancy; accession; intellectual labor namely, for… …   Black's law dictionary

  • original acquisition — is that by which a man secures a property in a thing which is not at the time he acquires it, and in its then existing condition, the property of any other individual. It may result from occupancy; accession; intellectual labor namely, for… …   Black's law dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»